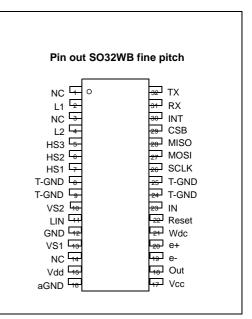
MOTOROLA SEMICONDUCTOR TECHNICAL DATA

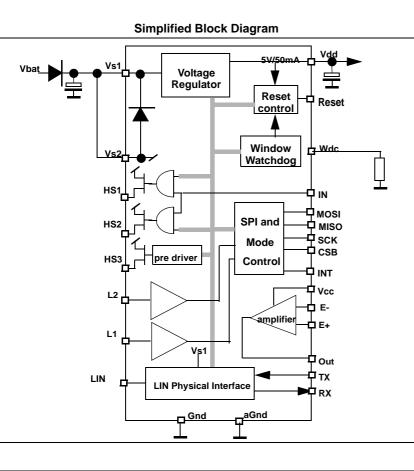
MC33689

Product Preview

System Basis Chip with LIN transceiver

The LIN SBC is a monolithic integrated circuit combining many functions frequently used by automotive LIN distributed slave nodes. It incorporates:

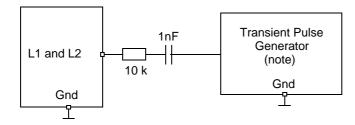

- Single voltage regulator with low power modes
- LIN physical interface.
- Wake up inputs.
- Triple high side driver
- Current sense op amp


• Vdd: Low drop voltage regulator, current limitation, over temperature detection, monitoring and reset function, current capability 50mA.

- Programmable window watchdog
- Three operational modes (normal, stop and sleep modes)
- Low current consumption in sleep and stop modes
- LIN physical interface compatible with LIN standard.
- Two external high voltage wake-up inputs
- Dual high side switches, relay driver capability, internal clamp, PWM capability.
- Single low current high side switch, 50mA capability for switch bias and hall sensor supply
- Current sense amplifier
- Nominal DC operating voltage from 5.5 to 27V
- 40V maximum transient voltage
- Wake up capabilities (wake up inputs, LIN interface)

LIN System basis chip

SILICON MONOLITHIC



ORDERING INFORMATION								
Device	Operating Temperature Range	Package						
MC33689DWB/R2	$T_{A} = -40$ to 125°C	SO-32						

1 MAXIMUM RATINGS

Ratings	Symbol	Min	Тур	Мах	Unit
ELECTRICAL RATINGS		1		•	•
Supply Voltage at Vs1 and Vs2 - Continuous voltage - Transient voltage (Load dump)	Vsupdc Vsuptr	-0.3		27 40	V
Supply Voltage Vdd and Vcc	Vdd	-0.3		5.5	V
Logic Inputs: MOSI, SCK, CSB, IN, Tx	Vinlog	- 0.3		Vdd+0.3	V
Logic output: MISO, INT, Rx, Reset	Voutlog	- 0.3		Vdd+0.3	V
Output current Vdd	ldd		Internally limited		А
E+, E- input voltage	Ve+-	-0.3		7	V
E+, E- input current	le+-	-20		20	mA
Out output voltage	Vout	-0.3		Vcc+0.3	V
Out output current	lout	-20		20	mA
L1 and L2 - DC Input voltage with a 33k resistor - Transient input voltage (according to ISO7637 specification) and with external component (see fig- ure 1 below).	Vlxdc Vlxtr	-18V -100		40 +100	V V
HS1 and HS2 output	Vhs12	internally clamped		Vs2+0.3	V
HS3	Vhs3	-0.3		Vs2+0.3	V
LIN - DC voltage Transient input voltage (according to ISO7637 specification) and with external component (see fig- ure 1 below).	Vbusdc Vbustr	-18 -150		+40 +100	V
ESD voltage (HBM 100pF, 1.5k) (GND, T-GND and aGND pins connected together and configured as ground) - LIN, L1, L2 - All other pins	Vesdh	-4 -2		4 2	kV
ESD voltage (HBM 100pF, 1.5k) (GND pin configured as ground, T-GND and aGND pins as I/O) - LIN, L1, L2 - All other pins	Vesdh	-4 -2		4 2	kV
ESD voltage (Machine Model) All pins (GND, T-GND and aGND pins connected together and configured as ground)	Vesdm	-200		200	V
ESD voltage (Machine Model) All pins (GND pin configured as ground, T-GND and aGND pins as I/O)	Vesdm	-150		150	V
THERMAL RATINGS		1		•	•
Junction Temperature	Тj	- 40		+150	°C
Storage Temperature	Τ _s	- 55		+165	°C
Ambient Temperature (for info only)	Ta	- 40		+85	°C
Thermal resistance junction to ambient	Rthj/a			80	°C/W

Figure 1. : Transient test pulses for LIN and Wake pins

note: Waveform in accordance to ISO7637 part1, test pulses 1, 2, 3a and 3b.

2 ELECTRICAL CHARACTERISTICS

(V_{s1} and V_{s2} from 5.5V to 18V and T_{amb} from -40°C to 125°C unless otherwise noted)

Decerintian	Cumbal	(Characteristic	s	Unit	Conditions	
Description	Symbol	Min	Тур	Max	Unit	Conditions	
Vs1 and Vs2 pins (Device power supply)				•		
Nominal DC Voltage range	Vsup	5.5		18	V		
Input Voltage during Load Dump	VsupLD			40	V	Load dump situation	
Input Voltage during jump start	VsupJS			27	V	Jump start situation (note 1)	
Supply Current in Normal Mode (note 2)	Isup(norm)		5	7.5	mA	lout at Vdd =10mA, LIN recessive state	
Supply Current in Sleep Mode (note 2)	Isleep		30	40	uA	Vdd off, Vsup<=13.5V	
Supply Current in Stop Mode (note 2)	Istop		60	75	uA	Vdd ON with lout<100uA, Vsup<=13.5V	
Supply voltage fall early warning threshold	VSUVew	5.7	6	6.6	V	Normal mode, INT gener- ated, bit VSUV set	
VSUV flag hysteresis	VSUVhyst		1		V	guaranteed by design	
Supply voltage over voltage warning threshold	VSOVw	18	19.25	20.50	V	Normal mode, INT gener- ated, bit VSOV set	
VSOV flag hysteresis	VSOVhyst		220		mV	guaranteed by design	

note 1: Device is fully functional. All functions are operating. Over temperature may occur.

note 2: Total current (IVs1+IVs2) measured at gnd pins.

Vdd (external 5V output for MCU supply). Specification with external capacitor 2uF<C<10uF and 200mOhms<=ESR<=10 ohm. Normal mode. Capacitor value up to 47uF chemical can be used.

Vdd Output Voltage	Vddout	4.75	5	5.25	V	Idd from 2 to 50mA 5.5V< Vsup <27V
Dropout Voltage (note 1)	Vdddrop		100	200	mV	Idd = 50mA (note 1) Vsup > 4.5V
Idd output current limitation (note 2)	ldd	50	110	200	mA	Internally limited
Over temperature pre warning (junction)	Tpre	120	135	160	°C	Normal mode, INT gener- ated, Bit VddT set guaranteed by design
Thermal Shutdown (junction)	Tsd	155	170		°C	Normal mode guaranteed by design
Temperature threshold difference		20	30	45	°C	Normal mode (Tsd-Tpre) guaranteed by design
Vsup range for Reset Active	Vsup _r	3.5			V	0.5 <vdd<vdd (rst-th1)<="" td=""></vdd<vdd>
Line Regulation	LR		20	150	mV	5.5V <v<sub>sup<27V, I_{dd}=10mA</v<sub>
Load Regulation	LD		40	150	mV	1mA <i<sub>Idd<50mA</i<sub>

note 1: measured when voltage has dropped 100mV below its nominal value.

note 2: total Vdd regulator current. A 5mA current for operational amplifier operation is included. Digital output supplied from Vdd.

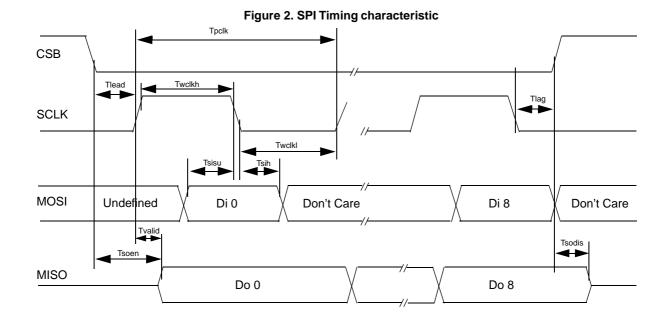
Vdd: in Stop mode

Vdd Output Voltage (note 1)	Vddstop	4.75	5,00	5.25	V	Idd<=2mA
Idd current capability (note 2)	Idds	4	8	14	mA	Stop mode
Line regulation	LR-s		10	100	mV	5.5V <v<sub>sup<27V, I_{dd}=2mA</v<sub>
Load regulation	LD-s		40	150	mV	1mA <i<sub>ldd<5mA</i<sub>

note 1: when switching from Normal mode to Stop mode, or from Stop mode to Normal mode the output voltage can varies within the output voltage specification.

note 2: when Idd is above Idds device enters reset mode

Reset: normal and stop modes (output pin only)


Reset threshold	Rst-th1	4.50	4.68	Vdd-0.2	V	
High Level Output current	loh		-250		μΑ	V _{out} >0.7Vdd
Low Level Output Voltage (I ₀ =1.5mA)	Vol	0		0.9	V	4.5V <v<sub>sup<27V</v<sub>

(V_{s1} and V_{s2} from 5.5V to 18V and T_{amb} from -40°C to 125°C unless otherwise noted)

Description	0	C	haracteristi	ics	11	Conditions
Description	Symbol	Min	Тур	Мах	Unit	
Reset pull down current	lpdw	1.5		8	mA	Internally limited. Vdd<4V, Vreset = 4.6V
Reset Duration after Vdd High	reset-dur	0.65	1	1.35	ms	
IN: input						
High Level Input Voltage	Vih	0.7Vdd		Vdd+0.3	V	
Low Level Input Voltage	Vil	-0.3		0.3Vdd	V	
Input Current	lin	-10		10	μΑ	0 <v<sub>IN<vdd< td=""></vdd<></v<sub>
MISO: SPI output		II		1		L
Low Level Output Voltage	Vol	0		1.0	V	l out = 1.5mA
High Level Output Voltage	Voh	Vdd-0.9		Vdd	V	l out = -250uA
Tristated MISO Leakage Current		-2		+2	uA	0V <v<sub>miso<vdd< td=""></vdd<></v<sub>
MOSI, SCLK, CSB: SPI input				•	•	
High Level Input Voltage	Vih	0.7Vdd		Vdd+0.3		
Low Level Input Voltage	Vil	-0.3		0.3Vdd	V	
CSB Pull up current source	lih	-100		-20	uA	V _i 1V to 3.5V
MOSI, SCK Input Current	lin	-10		10	uA	0 <v<sub>IN<vdd< td=""></vdd<></v<sub>
SPI: DIGITAL INTERFACE TIMING					•	
SPI operation frequency	Freq	0.25		4	MHz	
SCLK Clock Period	t _{pCLK}	250		N/A	ns	
SCLK Clock High Time	t _{wSCLKH}	125		N/A	ns	
SCLK Clock Low Time	t _{wSCLKL}	125		N/A	ns	
Falling Edge of CS to Rising Edge of SCLK	t _{lead}	100		N/A	ns	
Falling Edge of SCLK to CS Rising Edge	t _{lag}	100		N/A	ns	
MOSI to Falling Edge of SCLK	t _{SISU}	40		N/A	ns	
Falling Edge of SCLK to MOSI	t _{SIH}	40		N/A	ns	
MISO Rise Time (CL = 220pF)	t _{rSO}		25	50	ns	guaranteed by design
MISO Fall Time (CL = 220pF)	t _{fSO}		25	50	ns	guaranteed by design
Time from Falling or Rising Edges of CS to: - MISO Low Impedance - MISO High Impedance	t _{SOEN} t _{SODIS}	0		50 50	ns	guaranteed by design
Time from Rising Edge of SCLK to MISO Data Valid	t _{valid}	0		50	ns	0.2 V1= <miso>=0.8V1, C_L=100pF guaranteed by design</miso>

(V_{s1} and V_{s2} from 5.5V to 18V and T_{amb} from -40°C to 125°C unless otherwise noted)

Description	Symbol	Symbol Characteristics				Conditions
Description	Symbol	Min	Тур	Max	Unit	Conditions

Note:

Incoming data at MOSI pin is sampled by the SBC at SCLK falling edge. Outcoming data at MISO pin is set by the SBC at SCLK rising edge (after Tvalid delay time)

INT: output pin

Low Level Output Voltage (I ₀ =1.5mA)	Vol	0	0.9	V	
High Level Output Voltage (I ₀ =-250uA)	Voh	Vdd-0.9	Vdd		

WDC: window watchdog configuration pin

External resistor range	Rext	10		100	kohms	
Watchdog period accuracy with external resistor	Wdcacc	-15		15	%	Excluding resistor accuracy. Note 1
Watchdog period with external resistor	Wdp 10		10.558		ms	R = 10 kohms. note 1
Watchdog period with external resistor	Wdp 100		99.748		ms	R = 100 kohms. note 1
Watchdog period without external resis- tor, Conf pin open	PWdoff	97	150	205	ms	Normal mode

note 1: watchdog timing period calculation formula: Twd = 0.991 * R + 0.648 (R in kohms and Twd in ms).

HS1 and HS2: High side output pin

Rdson at Ta=25°C, and lout -150mA	Ron25		2	2.5	Ohms	Vsup>9V
Rdson at Ta=125°C, and lout -150mA	Ron125			4.5	Ohms	Vsup>9V
Rdson at Ta=125°C, and lout -120mA	Ron3		3		Ohms	5.5 <vsup<9v< td=""></vsup<9v<>
Output current limitation	llim	300	430	600	mA	
Over temperature Shutdown	Ovt	155		190	°C	note 1
Leakage current	lleak			10	uA	
Output Clamp Voltage at lout = -100mA	Vcl	-6			V	

(V_{s1} and V_{s2} from 5.5V to 18V and T_{amb} from -40°C to 125°C unless otherwise noted)

Description	Symbol	C	haracteristic	Unit	Conditions	
Description	Symbol	Min	Тур	Max	Onit	Conditions

note 1: when over temperature occurs, switch is turned off and latched off. Flag is set in SPI.

HS3: High side output pin

				7	Ohms	Vsup>9V
Rdson at Ta=125°C, and lout -50mA	Ron125			10	Ohms	Vsup>9V
dson at Ta=125°C, and lout -30mA	Ron3			14	Ohms	5.5 <vsup<9v< td=""></vsup<9v<>
Dutput current limitation	llim	60	100	200	mA	
Over temperature Shutdown	Ovt	155		190	°C	note 1
eakage current	lleak			10	uA	
ote 1: when over temperature occurs, sv	vitch is turned of	f and latched	off. Flag is se	et in SPI		
SENSE CURRENT AMPLIFIER SEC	TION:					
Rail to rail input voltage	Vimc	-0.1		Vcc+0.1	V	
Output voltage range	Vout1	0.1		Vcc-0.1	V	Output current +- 1mA
Output voltage range	Vout2	0.3		Vcc-0.3	V	Output current +-5 mA
nput bias current	lb			250	nA	
nput offset current	lo	-100		100	nA	
nput offset voltage	Vio	-15		15	mV	
Supply voltage rejection ratio	SVR	60			dB	Guaranteed by design
common mode rejection ratio	CMR	70			dB	Guaranteed by design
Sain bandwidth	GBP	1			Mhz	Guaranteed by design
lew rate	SR	0.5			V/us	
hase margin	PHMO	40			٥	For gain=1,load 100pF// 5kohms. Guaranteed by desig
pen loop gain	OLG		85		dB	Guaranteed by design
1, L2 inputs						
legative Switching Threshold	Vthn	2 2.5 2.7	2.5 3 3.2	3 3.5 3.7	V	5.5V <vsup<6v 6V<vsup<18v 18V<vsup<27< td=""></vsup<27<></vsup<18v </vsup<6v
ositive Switching Threshold	Vthp	2.7 3 3.5	3.3 4 4.2	3.8 4.5 4.7	V	5.5V <vsup<6v 6V<vsup<18v 18V<vsup<27< td=""></vsup<27<></vsup<18v </vsup<6v
lysteresis	Vhyst	0.5		1.3	V	5.5V <vsup<27< td=""></vsup<27<>
nput current	lin	-10		10	uA	-0.2V < Vin < 40V
Vake up Filter Time	Twuf	8	20	38	us	Guaranteed by design

Delay between CSB low to high transition (at end of SPI stop command) and Stop mode activation (Guaranteed by design)	Tstop-m Tstop-nw Tstop-M	1.4 6 12		5 30 50	us us us	Minimum Watchdog period No watchdog selected Maximum watchdog period	
Interrupt low level duration	Tint	7	10	13	us		
Internal oscillator frequency accuracy	Osc-f1	-35		35	%	All modes, for info only	
Normal request mode time out	NRtout	97	150	205	ms	Normal request mode	
Delay between SPI command and HS1, HS2 or HS3 turn on (note 1, 2)	Ts-HSon			20	us	Normal mode Vsup>9V, Vhs >= 0.2 Vs1	
Delay between SPI command and HS1, HS2 or HS3 turn off (note 1, 2)	Ts-HSoff			20	us	Normal mode Vsup>9V, Vhs <= 0.8 Vs1	
Delay between Normal Request and Nor- mal mode, after W/D trigger command	Ts-NR2N	6	35	30	us	Normal request mode, Guar- anteed by design	
Delay between CSB wake up (CSB low to high) and SBC normal request mode (Vdd1 on & reset high)	Tw-csb	15	40	80	us	SBC in stop mode	

(V_{s1} and V_{s2} from 5.5V to 18V and T_{amb} from -40°C to 125°C unless otherwise noted)

Description	Symbol	c	Characteristic	s	Unit	Conditions	
	Symbol	Min	Тур	Max	Unit		
Delay between CSB wake up (CSB low to high) and first accepted SPI command	Tw-spi	90		N/A	us	SBC in stop mode	
Delay between INT pulse and 1st SPI command accepted	Ts-1stspi	30		N/A	us	In stop mode after wake up	
The minimum time between two rising edges on the CSB	T2csb	15			us		

note 1: when IN input is set to high, delay starts at falling edge of clock cycle #8 of the SPI command and start of device activation/deactivation. 30mA load on HS switches. Excluding rise or fall time due to external load.

note 2: when IN used to control HS switches, delays measured betxween IN and HS1 or HS2 on /off. 30mA load on HS switches. Excluding rise or fall time due to external load.

Rx: LIN physical layer output

Ith. Ent physical layer output						
Low Level Voltage Output	Vol	0		0.9	V	l in ≤ +1.5mA
High Level Voltage Output	Voh	3.75		5.25	V	l out ≤ 250uA
Tx: LIN physical layer input						
Low Level Voltage Input	Vil			1.5	V	
High Level Voltage Input	Vih	3.5			V	
Input Threshold Hysteresis	Vinhyst	50	550	800	mV	
Pull-up Current Source	ls	-100		-20	uA	1V <v(tx) 3.5v<="" <="" td=""></v(tx)>
LIN: physical layer bus (Voltage Express	sed versus Vs	sup Voltage)		•		
Low Level Dominant Voltage	Vlin-low			1.4	V	external bus pull 500 Ohms
High Level Voltage (Tx high, lout = 1uA)	Vlin-high	Vsup-1			V	Recessive state
Pull up Resistor to Vsup	Rpu	20	30	47	kohms	In normal mode. In sleep and stop mode if not turned off by SPI
Pull up current source	lpu		1.3		uA	In sleep and stop mode with 30k disconnected
Over current shutdown threshold	lov-cur	50	75	150	mA	
Over current shutdown delay	lov-delay		10		us	Guaranteed by design
Leakage Current to GND	Ibus-pas- rec	0	3	20	uA	Recessive state, Vsup 8V to 18V, Vlin 8V to 18V
Gnd disconnected, Vgnd = Vsup, VLin at -18V	lbus no gnd	-1		1	mA	
Leakage Current to GND, Vsup Discon- nected, VLin at +18V	lbus		1	10	uA	Vsup disconnected Vlin at +18V
Lin Receiver Vil (Tx high, Rx low)	Lin-vil	0		0.4V _{SUP}		
Lin Receiver Vih (Tx high, Rx high)	Lin-vih	0.6 V _{SUP}		V _{SUP}		
LIN Receiver Threshold center	Lin-thres	0.475	0.5	0.525	Vsup	(Lin-vih - Lin-vil) / 2
LIN Receiver Input Hysteresis	LIN hyst			0.175	Vsup	Lin-vih - Lin-vil
LIN wake up threshold	LIN wu		0.5		Vsup	

LIN physical layer: bus driver timing characteristics for normal slew rate (note 1)

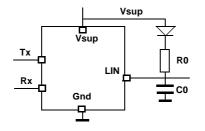
		•••••••••••••••••••••••••••••••••••••••	 -,		
Dominant propagation delay Tx to LIN	tdom min		50	us	Measurement threshold 58.1% Vsup
Dominant propagation delay Tx to LIN	tdom max		50	us	Measurement threshold 28.4% Vsup
Recessive propagation delay Tx to LIN	trec min		50	us	Measurement threshold 42.2% Vsup
Recessive propagation delay Tx to LIN	trec max		50	us	Measurement threshold 74.4% Vsup
Prop delay symmetry: tdom min - trec max	dt1	-10.44	-	us	

Prop delay symmetry: tdom max - trec	dt2	-	11	us	
min					

note 1: Vsup from 7V to 18V, bus load R0 and C0 1nF/1k, 6.8nF/660, 10nF/500. Measurement thresholds: 50% of Tx signal to LIN signal threshold defined in the column "condition"

LIN physical layer: bus driver timing ch	aracteristics f	or slow slew	rate (note 1)			
Dominant propagation delay Tx to LIN	tdom min			100	us	Measurement threshold 61.6% Vsup
Dominant propagation delay Tx to LIN	tdom max			100	us	Measurement threshold 25.1% Vsup
Recessive propagation delay Tx to LIN	trec min			100	us	Measurement threshold 38.9% Vsup
Recessive propagation delay Tx to LIN	trec max			100	us	Measurement threshold 77.8% Vsup
Prop delay symmetry: tdom min - trec max	dt1s	-22		-	us	
Prop delay symmetry: tdom max - trec min	dt2s	-		23	us	

note 1: Vsup from 7V to 18V, bus load R0 and C0 1nF/1k, 6.8nF/660, 10nF/500. Measurement thresholds: 50% of Tx signal to LIN signal threshold defined in the column "condition"


LIN physical layer: bus driver fast slew rate							
LIN high slew rate (programming mode)	Dv/Dt fast		13		V/us	Fast slew rate	

LIN physical layer: receiver characteristics and wake up timings									
Receiver dominant propagation delay	TrL		3.5	6	us	LIN low to Rx low. Note 2			
Receiver recessive propagation delay	TrH		3.5	6	us	LIN high to Rx high. note 2			
Receiver prop delay symmetry	Tr-sym	-2		2	us	TrL - TrH			
Bus wake up deglitcher	TpropWL	30	70	90	us	Sleep and stop mode			
Bus wake up event reported	Twake		20		us	Note 3			

note 2: Measured between LIN signal threshold "Lin-vil" or "Lin-vih" and 50% of Rx signal.

note 3: Twake is typically 2 internal clock cycles after LIN rising edge detected. Ref to "LIN bus wake up behavior" figure. In sleep mode the Vdd rise time is strongly dependant upon the decoupling capacitor at Vdd pin.

Figure 3. Test circuit for timing measurements

R0 and C0: 1k/1nF, 660ohms/6.8nF and 500ohms/10nF

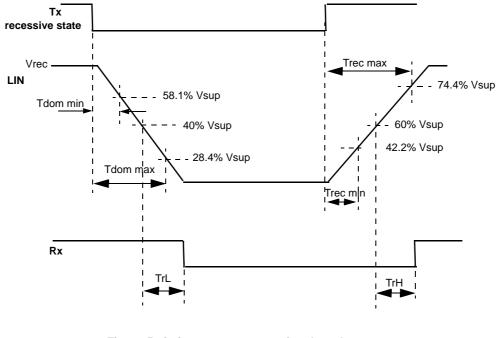
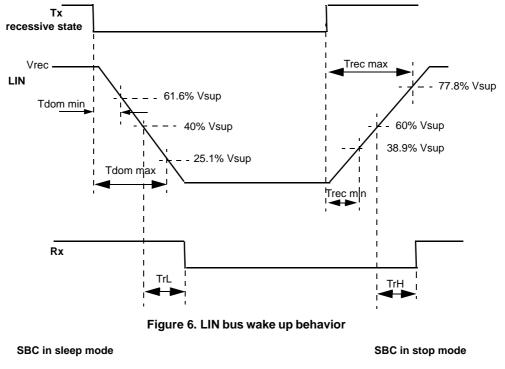
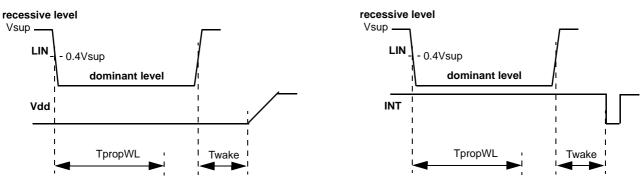
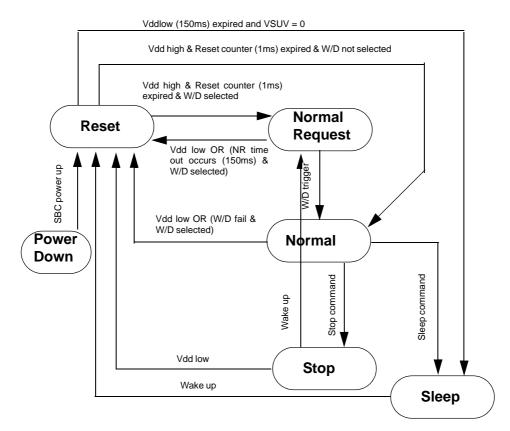




Figure 4. timing measurements for normal slew rate



For More Information On This Product, Go to: www.freescale.com

3 STATE MACHINE

W/D selected means: external resistor between Wdc pin and gnd or Wdc pin open.

W/D not selected means Wdc pin connected to gnd.

W/D fail means: W/D trigger occurs in closed window or no SPI W/D trigger command. Stop command means: SPI stop command.

Sleep command means: SPI sleep request followed by SPI sleep command.

Wake up means: L1 or L2 state change or LIN bus wake up or CSB rising edge.

4 PIN DESCRIPTION

pin name	Pin number	function
Vs1	13	Power supply pin. Supply for the voltage regulator and the internal logic.
Vs2	10	Power supply pin. Supply for the high side switches.
GND	12	Electrical ground pin pins for the device.
aGND	16	Analog ground pin for voltage regulator and sense amplifier.
T-GND	8,9,24,25	Thermal ground pins for the device
Vdd	15	5V regulator output.
Reset	22	Reset output
Wdc	21	Configuration pin for the watchdog. A resistor is connected to this pin. The resistor value defines the watchdog period. If the pin is open, the W/D period is fixed (default value). If this pin is tied to gnd the watchdog is disabled.
Тх	32	Transmitter input of the LIN interface
Rx	31	Receiver output of the LIN interface
LIN	11	LIN bus line
HS1, HS2, HS3	7,6,5	High side driver output 1, output 2 and output 3
L1, L2	2,4	Wake input 1, wake up input 2
Vcc	17	5V supply input of operational amplifier
E-	19	Inverted input of the sense amplifier
E+	20	Non inverted input of the sense amplifier
Out	18	Output of the sense amplifier
MOSI	27	SPI: Master Out Slave In pin
MISO	28	SPI: Master In Slave Out
SCLK	26	SPI: Clock input pin
CSB	29	SPI: Device chip select pin
INT	30	Interrupt output pin AND wake up event signalling in stop mode.
IN	23	Direct input for PWM control of High Side switches 1 and 2

5 GENERAL DESCRIPTION

The LIN SBC is an integrated circuit dedicated to automotive applications. It includes the following functions:

- One full protected voltage regulator with 50mA total output current capability available at Vdd external pin, with under voltage reset function.

- Programmable window watchdog function, INT output
- Wake up from Lx wake input and LIN bus
- LIN physical interface
- Two 150mA high side protected switches PWM capable for relay or lamp drive
- One 50mA high side protected switch for hall sensor or
- Current sense op amp

5.1 Device Supply

The device is supplied from the battery line through the Vs1 and VS2 pins. An external diode is required to protect against negative transients and reverse battery. It can operate from 4.5V and under the jump start condition at 27V DC. Device functionality is guaranteed down to 4.5V at VS1 and VS2 pins. This pin sustains standard automotive voltage conditions such as load dump at 40V.

5.2 Over and under voltage warning.

If the voltage at VS1 exceed 20V typical or falls below 6V typical, the device generates an INT. VSOV or VSUV bits are set in the SPI register. Information is latched until the bit is read AND the fault has disappeared. The interrupt is not maskable.

5.3 LIN physical interface:

The device contains an integrated LIN physical interface.

5.4 L1 and L2 inputs:

These pins are used to sense external switches and to wake up the device from sleep or stop mode. During normal mode the state of these pins can be read through SPI.

5.5 HS1 and HS2:

These are two high side switches to drive load such as relays or lamps. They are protected against over current and over temperature and include internal clamp circuitry for inductive load drive. Control is done through SPI. PWM capability is offered through the IN input.

If PWM control is required, the internal circuitry which drive the internal high side switch is an AND function between the SPI bit HS1 (or HS2) and the IN input. In order to have HS1 on, bit HS1 must be set and IN input must be tied to a micro controller PWM ouptut to generate the PWM control signal (HS1 on when IN is high, HS1 off when IN is low). Same for HS2 output.

If not PWM control is required, IN input must be connected to Vdd or to a high logic level, then the control of HS1 and HS2 is done through SPI only.

If over temperature occurs on any of the 3 switches, the faulty switch is turned off and latched off until HS1 (or HS2 or HS3) bit is set to 1 in the SPI register. The failure is reported through SPI by HSst bit.

5.6 HS3:

This high side switch can be used to drive small lamps, hall sensor or switch pull up resistors. Control is done through SPI

5.7 Sense amplifier:

E+, E- and OUT are the 3 terminations of the current sense amplifier. The amplifier is enable in normal mode only.

5.8 Mode of operation

Mode are controlled by the mode1 and mode 2 bits in the SPI register. 3 modes are available: sleep, stop and normal.

The operation modes and the associated functions are described in the table below.

Device Mode	Voltage Regulator	Wake up capabilities	Reset output	Watchdog function	HS1 HS2 HS3	LIN interface	Opera- tional amplifier
Reset	Vdd: ON	N/A	Low for typ 1ms, then high (if Vdd above threshold)	Disable	OFF	Recessive only	Not active
Normal Request	Vdd: ON	N/A	- High. - Active low if Vdd under voltage occurs and if Normal Request timeout (if W/D enable)	150ms time out if W/D enabled.	ON or OFF	Transmit and Receive	Not active

Table 5-1.

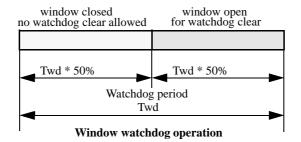
Device Mode	Voltage Regulator	Wake up capabilities	Reset output	Watchdog function	HS1 HS2 HS3	LIN interface	Opera- tional amplifier
Normal	Vdd: ON	N/A	- High. - Active low if Vdd under voltage occurs or if W/D fail (if W/D enable)	Window WD if enabled.	ON or OFF	Transmit and Receive	Active
Stop	Vdd ON, limited current capability	LIN and state change on Lx inputs	 Normally high. Active low if Vdd under voltage occurs 	Disable	OFF	Recessive state with Wake capability	Not active
Sleep	Vdd OFF, (Set to 5V after wake up to enter Normal request)	LIN and state change on Lx inputs	- Low - Go to high after wake up and Vdd within spec	Disable	OFF	Recessive state with Wake capability	Not active

Table 5-1.

Sleep and stop mode enter:

To safely enter sleep or stop mode and to ensure that these modes are not entered by noise issue during SPI transmission, a dedicated sequence combining bit controlling the LIN bus and the device mode must be send twice.

Enter sleep mode: first and second SPI commands (with bit D6=1, D7=1, D5 =0 or 1, D1=0 and D0=0) 11x0_0000 must be sent.


Enter stop mode: first and second SPI commands (with bit D6=1, D7=1, D5 =0 or 1, D1=0 and D0=1) 11x0_0001 must be sent.

Sleep or stop mode is entered after the second SPI command. D5 bit must be set accordingly.

5.9 Window watchdog.

The window watchdog is configurable using external resistor at Wdc pin. The W/D is cleared through mode1 and mode 2 bit is SPI register. If Wdc pin is left open a fixed watchdog period is selected (typ 150ms). If no watchdog function is required or to disable the watchdog, the Wdc pin must be connected to gnd. The watchdog period is calculated by the following formula: **Twd = 0.991 * R +0.648** (with R in kohms and Twd in ms).

 $\mathbf{w} = \mathbf{0.331} \cdot \mathbf{K} + \mathbf{0.040} \text{ (with K in Kohins and two in fits)}.$

Watchdog clear:

The watchdog is cleared by SPI write command with following mode1 and mode2 bits.

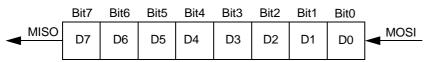
Mode 2	Mode 1	Mode
0	0	Sleep mode (note 1)
0	1	Stop mode
1	0	Normal mode + W/D clear (note 2)
1	1	Normal mode

Note 1: Special SPI command and sequence is implemented in order to avoid to go into sleep or stop mode with a single 8 bit SPI command.

Note 2: When a zero is written to "Mode1" bit while "Mode2" bit is written as a one, after the SPI command is completed "Mode1" bit is set to one and SBC stays in normal mode. In order to set the SBC in sleep mode, both "Mode1" and "Mode2" bits must be written in the same 8 bits SPI command.

The W/D clear on normal request mode (150ms) has no window.

5.10 INT pin:


- This pin is used to report fault to the MCU. Int pulse is generated in case of:
- Vdd regulator temperature pre warning
- high side switch 1, 2 or 3 thermal shutdown
- Vsup over voltage (20V typ)
- Vsup under voltage (6V typ).

If an INT is generated, when the next SPI read operation is performed bit D7 is set to 1. This mean that the bits (D6 to D0) report the interrupt source.

In case of wake up from stop mode, INT is set low in order to signal to the MCU wake up event from L1, L2 or LIN bus.

6 SPI INTERFACE AND REGISTER DESCRIPTION

6.1 Data format description

The SPI is an 8 bits SPI. All bits are data bytes. The MSB is send first. The minimum time between two rising edges on the CSB pin is 15us.

During an SPI communication the state of MISO reports the state of the SBC, at time of CSB high to low transitions. The status flag are latched at CSB high to low transitions.

Following tables describe the SPI register bit meaning, "reset value" and "bit reset condition".

		D7	D6	D5	D4	D3	D2	D1	D0
	W	LINSL2	LINSL1	LIN-PU	HS3	HS2	HS1	Mode2	Mode1
	R	INT source	LINWU or LINFAIL	VSOV	VSUV BATFAIL (note1)	VddT	HSst	L2	L1
Write Reset value		0	0	0	0	0	0	-	-
Write Reset condition		POR, RESET	POR, RESET	POR	POR, RESET	POR, RESET	POR, RESET		

Note 1: The first SPI read, after reset, returns the BATFAIL flag state on bit D4.

D7 signals INT source. After INT occur, D7 read as a "1" means other bits report the INT source. D7 read as a "0" mean no INT occurred and other bit report real time status.

6.2 Write control bits:

6.2.1 Mode control bits:

Mode 2	Mode 1	Description
0	0	Sleep mode
0	1	Stop mode
1	0	Normal mode + W/D clear
1	1	Normal mode

6.2.2 High side switches control bits:

HS1	Description	HS2	Description	HS3	Description
0	HS1 off	0	HS2 off	0	HS3 off
1	HS1 on (if IN = 1)	1	HS2 on (if IN = 1)	1	HS3 on

6.2.3 LIN pull up termination control bits:

LIN-PU	Description
0	30k pull up connected in sleep and stop mode
1	30k pull up disconnected in sleep and stop mode

6.2.4 LIN slew rate control and device low power mode pre selection:

LINSL2	LINSL1	Description
0	0	Lin slew rate normal (baud rate up to 20kb/s)
0	1	Lin slew rate slow (baud rate up to 10kb/s)
1	0	Lin slew rate fast (for program download, baud rate up to 100kb/s)
1	1	Low power mode (sleep or stop mode) request, no change in LIN slew rate

6.3 Read control bits:

6.3.1 Switch input wake up and real time status:

L2	Description	L1	Description
0	L2 input low	0	L1 input low
1	L2 input high or wake up by L2 (first register read after wake up)	1	L1 input high or wake up by L1 (first register read after wake up)

6.3.2 High side switch, voltage regulator and device supply status

HSst	Description	VddT	Description	VSUV BATFAIL	Description	VSOV	Description
0	HS no over temp	0	No over temperature	0	Vsup above 6V	0	Vsup below 19V
1	HS1,2 or 3 OFF (over temp)	1	Vdd over temperature pre warning	1	Vsup below 6V	1	Vsup above 18V

6.3.3 LIN bus status

LINWU LINFAIL	Description				
0	No LIN bus wake up of failure				
1	LIN bus wake up occurred or LIN over current of over temperature				

6.3.4 Interrupt status

INT mask	Description
0	SPI word read reflects the flag state
1	SPI word read reflects the interrupt or wake up source

DWB SUFFIX (32-LEAD SOIC) PLASTIC PACKAGE

CASE 1324 ISSUE A

ALL DMENSIONS ARE IN MILLIMETERS. DMENSIONING AND TOLERANCING PER ASME Y14 (M, 1994. ż DATUMS & AND C TO BE DETERMINED AT THE 3. DATURS 5 AND C TO BE DETEMINED AT THE PLANE WHERE THE BOTTOM OF THE LEADERNT THE PLASTIC BODY. THIS DIMENSION ODES NOT INCLUDE MOLD FLASH, PROTRUSION OR GATE BURRS. MOLD FLASH, PROTRUSION OR GATE BURRS SHALL NOT EXCEED 0.15 MM PER SIDE. THIS 10.3 Δ 7.6c 2.65 7.4 DMENSION IS DETERMINED AT THE PLANE /5 WHERE THE BOTTOM OF THE LEADS EXIT THE WHERE THE BOTTOM OF THE LEADS EXIT THE PLASTIC BODY. THIS DIMENSION DOES NOT INCLUDE INTERLEAD FLASH OR PROTRUSIONS SHALL NOT EXCEED 0.25 MM PER SIDE. THIS DIMENSION IS DETERMINED AT THE PLANE WHERE THE BOTTOM OF THE LEADS EXIT THE PLASTIC BODY. THIS DIMENSION DOES NOT INCLUDE DAMBAR PROTRUSSION DOES NOT INCLUDE DAMBAR 308 A ni az ò 0.65 PIN 1 ID = --A 2 THIS DIMENSION DOES NOT INCLUDE DAMBAR PROTINUSION ALLOWABLE DAMBAR PROTINUSION SHALL NOT CAUSE THE LEAD WOTH TO EXCEED 0.4 MM PER SIDE. DAMBAR CANNOT BE LOCATED ON THE LOWER RACUS OR THE FOOT. MINIMUM SPACE BETWEEN PROTRUSION AND ADJACENT LEAD SHALL NOT LESS THAN 0.87 MM. EXACT SHAPE OF EACH CORNER IS OPTIONAL TARGE PARENEWS AND ADD Y TO THE 0.47 в -----= -崟 EAACT SHAPE OF EACH COMEN IS OPTIONAL. THESE DMINISIONS APPLY TO THE FLAT SECTION OF THE LEAD BETWEEN 3.10 MM AND 0.3 MM FROM THE LEAD THE THE PACKAGE TOP MAY BE SMALLER THAN THE INCKAGE BOTTOM. THE DMENSION IS DETERMINED AT THE OUTERMOST EXTREMES DETERMINED AT THE OUTERMOST EXTREMES A SEATIN 5.15 ◬ **2X 16 TIPS** 0.3 A B C Q 0.10 A OF THE PLASTIC BODY EXCLUSIVE OF MOLD FLASH, THE BAR BURRS, GATE BURRS AND INTER-LEAD FLASH, BUT INCLUDING ANY INSMATCH BETWEEN THE TOP AND BOTTOM OF (0.29) THE PLASTIC BODY BASE METAL 0.25 (0.203) R0.08 MIN A 0.25 0.29 0.38 GALIGE PL ⊕ 0.13⁽¹⁾ C A ⁽²⁾ B /8 SECTION A-A SECTION B-B

Motorola reserves the right to make changes without further notice to any products herein. Motorola makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does Motorola assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation consequential or incidental damages. "Typical" parameters which may be provided in Motorola data sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including "Typical" must be validated for each customer application by customer's technical experts. Motorola does not convey any license under its patent rights nor the rights of others. Motorola products are not designed, intended or authorized for use as components in systems intended for surgical implant into the body, or other applications intended to support or sustain life, or for any such unintended or unauthorized application, Buyer shall indemnify and hold Motorola and its officers, employees, subsidiaries, affliates, and distributors harmless against all claims, costs, damages, and evenense and rescented with such unintended or una authorized use avenense and rescented with such unintended or unauthorized use avenense and rescented by attempting the subsidiaries, affliates, and distributors harmless against all claims, costs, damages, and evenense and rescented with such unintended or unauthorized use avenense. Motorola reserves the right to make changes without further notice to any products herein. Motorola makes no warranty, representation or guarantee regarding the suitability expenses, and reasonable attorney fees arising out of, directly or indirectly, any claim of personal injury or death associated with such unintended or un authorized use, even if

such claim alleges that Motorola was negligent regarding the design or manufacture of the parts. Motorola and (AA) are registered trademarks of Motorola, Inc. Motorola, Inc. is an Equal Employment Opportunity/Affirmative Action Employer.

How to reach us:

USA / EUROPE / Locations Not Listed: Motorola Literature Distribution; P.O. Box 5405, Denver, Colorado 80217. 1-303-675-2140 or 1-800-441-2447

Technical Information Center: 1-800-521-6274

HOME PAGE: http://www.motorola.com/semiconductors

JAPAN: Motorola Japan Ltd.; SPS, Technical Information Center, 3-20-1, Minami-Azabu, Minato-ku, Tokyo 106-8573 Japan. 81-3-344-3569

ASIA / PACIFIC: Motorola Semiconductors H.K. Ltd.; Silicon Harbour Centre, 2, Dai King Street, Tai Po Industrial Estate, Tai Po, N.T., Hong Kong. 852-26668334